翻訳と辞書 |
Hardy–Littlewood inequality : ウィキペディア英語版 | Hardy–Littlewood inequality In mathematical analysis, the Hardy–Littlewood inequality, named after G. H. Hardy and John Edensor Littlewood, states that if ''f'' and ''g'' are nonnegative measurable real functions vanishing at infinity that are defined on ''n''-dimensional Euclidean space R''n'' then : where ''f'' * and ''g'' * are the symmetric decreasing rearrangements of ''f''(''x'') and ''g''(''x''), respectively.〔 〕 ==Proof== From layer cake representation we have:〔〔 : : where denotes the indicator function of the subset ''E'' ''f'' given by : Analogously, denotes the indicator function of the subset ''E'' ''g'' given by : : ::: ::: ::: ::: ::: :::
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hardy–Littlewood inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|